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ANNOTATION

A qualitative description is given of the evolution of a dense

plasma cloud, which is injected into the magnetosphere perpendicular

to the magnetic field force lines. Characteristic times are evalu-

ated for the free expansion and diffusion of the magnetic field into

the cloud. Hydromagnetic instability questions are considered for

the cloud surface. This instability is related to the surface

curvature and the passage of the cloud around the magnetosphere

plasma at the initial stage of magnetic field diffusion into the

cloud. The effects of pressure anisotropy, which is caused by the

passage of the cloud along the magnetic field force lines, are studied

on the drift, and current instabilities are studied in the case of

subsequent spreading of the cloud along the magnetic field. New

instability rpdes are found' which significantly affect the pressure

anisotropy in\ an inhomogeneous plasma, or in the presence of a

flux of particles in the plasma.
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1. Qualitative Discussion of the Cloud Dynamics

Investigation of the behavior of plasma clouds (both charged /3"

and quasi-neutral) in a transverse magnetic field is of current

interest in connection with the use of artificial perturbation for

studying cosmic plasma [1 - 8].

This article considers the injection of a quasi-neutral plasma

cloud in a transverse magnetic field. Here, the following cloud

parameters are used (CGS system): overall cloud velocity along the

injection axis x,-v1 ro ,dispersion angle F'-15\(see Figure 1), dis-

persion velocity along the z-axis .- l sir,-e -4, O , the initial dis-

persion velocity along the y-axis, particle temperature Te-Ti-T-Me0,

speed of sound u~ffT/mi-soQ' , x / , M is the mass of a

hydrogen atom, VrT ; ls3-1 6'/V , T -i/ . The injected cloud volume is

u~I =o~, and the energy in this volume is a./- 1 joule = 107. The

number of particles in the cloud is

, e O -§

The initial cloud density is

Numbers in the margin indicate pagination in the original foreign
text.
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The ratio of the gas-kinetic pressure of the plasma to the magnetic'

field pressure is

where v- /,/- .p is the Alfven velocity ( , NM) . At the initial

moment of time, '{. The injection time t a 10 usec = 10-5
U

The magnetic field strength is B-T.1. The ratio of the dynamic pres-

sure of the cloud, which moves with a velocity v.lalong the j-axis,

to the magnetic pressure is:

S'A (1.2)

a) Free expansion stage of the cloud

The magnetic field does not affect the expansion of the cloud

as long as B > 1. As a result, the final cloud dimensions at the

stage of free expansion (1 > 1) are large compared to the initial

dimensions, so that the initial cloud dimensions can be neglected.

Thus, the cloud density decreases with time according to the equation:

(1.3)

since the cloud expansion velocity is of the order of v0 along the

y and z-axes, and of the order of vs along the x-axis (in a coor-

dinate system at rest with the center of inertia of the cloud).

Since v0 > vs, cloud expansion is stopped first by the action of the

magnetic field with respect to 0 and x.1 This occurs at t u tl, when

1. Thus, according to Equation (1.1):

T, - (1.4)

Substituting Equation (1.4) in (1.3) yields: /5

I . (1.5)
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Here, the cloud dimensions are of the same order in all directions:

L, -,t, to a' . (1.6)

We note that this discussion [see Equation (1.3)] is correct for

these parameters only if:

t t tu IS. / (1.7)

when it is possible to neglect the dimensions which the cloud has at

the moment the injection ends, compared with its dimensions at time t.

b)_ Effect of the magnetic field on the cloud

motion at the stage when the magnetic field

is diffusing into the cloud

Further cloud motion perpendicular to the magnetic force lines

is determined by the magnetic field (for pa 1). Here, the cloud:

shape can be quite different, depending on the parameter e/.

1. Motion of a light plasma cloud.(x-11).

Expansion of the cloud ceases along x and y almost at the same

time (for t r1 t), as indicated by Equations (1.1) and (1.2) for

e-1 when the velocity vry ~ , that is, when PV-AI. The inertia of

the cloud will cause it to continue to expand at time (%tl) perpen-

dicular to the magnetic field (and simultaneously along the field),

so that the parameter becomes less than unity, and the magnetic /6

field starts to collapse the cloud perpendicular to the force lines

with a velocity a vA . The cloud density increases faster from this

two-dimensional compression than it decreased, because of the spread-

ing of the plasma along the field, so that the density soon (in a

time % tl) again reaches a value n > nl, when B i, and so forth.

In this manner, the cloud will oscillate with cylindrical symmetry

relative to the z-axis, with a continually decreasing radius. Here,
the cloud density will remain almost constant (n % nl). The average
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cloud radius and length will vary with time as follows. Since the

magnetic field does not affect the cloud expansion along the force

lines,

(1.8)

where t is time measured from the end of the free expansion of the

cloud. Since the cloud volume deforms as -.. in two-dimensional

compression, and remains almost constant (N = const, n a nl) ,

L Y 2(L.- c) (1.9)

Diffusion of the magnetic field into the cloud occurs simultaneously
with the collapse of the cloud. The diffusion is related to the
dissipation of the currents induced in the cloud, which compensate
for the external magnetic field in the cloud volume. The cloud
compression process perpendicular to the field ends after a time
'-4., during which the magnetic field completely diffuses into the
cloud. At this moment, the transverse cloud dimensions will be:

:L (1.10)

from Equation (1.3). On the other hand, it is known that in time ,j /7
the magnetic field will diffuse into a plasma perpendicular to the

magnetic force lines to a depth

L' .~f. (1.11)

where D~--- is the diffusion coefficient (magnetic viscosity)

of the field, a1 is the effective collision frequency of the cloud

electrons, and wpe is the Langmuir frequency of the electrons. In

the case of the collision-controlled dissipation, Vef is determined

by Coulomb collision of the electrons with the electrons and ions of

the cloud, and also by the neutrals in the ionosphere. (For the

parameters used here, the neutrals give a contribution on the order

of 1 for altitudes < 500 km.) Equating Equations (1.10) and (1.11)

yields:
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•1 ~' to (1.12)

It follows from Equations (1.8), (1.10), and (1.12) that when the

cloud stops collapsing, it will be a strongly elongated cylinder

with dimensions:

L .~, -o ,a (1.13)

2. Motion of a heavy plasma cloud (a i)

In this case, the cloud dimensions L. L .will be much less than the

dimensions L_~L ~ .t, when the cloud stops expanding along x [lat a tim_

t b tl from Equation (1.5)], when 6 % 1 and n nl % 102 [see (1.6)].

For example, Zx = 137 for a barium cloud; the numerical values:

L V t, -t 21 0 L -L . 5,-10. (1.14)

Since P "i*, expansion along y (and also along z) in this case will /8

be such that the cloud becomes a disk, which is flattened along the

injection direction (x). Furthermore, the cloud density will con-

tinue to decrease, and the magnetic field will collapse the cloud

for the same reasons given above, (1), but now only along x. Al-

though compression by the magnetic field is now one-dimensional,

nonetheless, the density will again reach the value n n nl (i6 n 1)

ifer a certain time, since the base surfaces of such a cloud surface

grow much faster in time than its lateral surfaces, through which the

cloud flows. Actually, the ratio of the cloud particle fluxes perpen-

dicular to these surfaces is of the order:

Sbase v (L
se (1.15)

Slateral A

Thus, the.cloud will continue to be compressed along x, and will

flow along y and z withan almost constant density n , nl. The

cloud volume remains constant and deforms as V-X-x3. Then, the

same considerations as in section (1) yield:

5



.L L . 0% L " ,L Z
L-_ *-uZt .(L,.,%t)A (1.16)

The diffusion time of the magnetic field is:

"-t,' -, ~ . - (1.17)

The cloud dimensions are:

L -1

at the moment when the field diffuses completely into the cloud.

It should be noted that a similar discussion of the magnetic /9

field diffusion into the cloud during its collapse is valid under

the conditions that the free expansion time tl of the cloud is sig-

nificantly less than the diffusion time Td of the magnetic field

into the cloud. If instabilities arise in the cloud simultaneously

with the collapse of the cloud, and if these instabilities lead to

an increase of the effective collision frequency vef of the cloud

electrons, and thus decrease the (turbulent) diffusion time Td,
then the cloud collapse will end much more quickly.

c)_ Stability ofthe cloud boundary

We consider the stability of a sharp cloud boundary (in the

sense that the perturbation wavelength of the boundary is much

larger than the thickness of the transition layer) in a coordinate

system that is at rest with respect to the undisturbed boundary.

Inside the cloud, the electric and magnetic fields are not at equi-

librium, and the density is constant. The perturbing quantities

are founrd from the equation of continuity, the equation of state,

and the equation of equilibrium in the single-fluid approximation:

P-- .. , (1.19)
6F.t .PO



where v*T.F--o is the sound speed; pO and pO are the equilibrium

(constant) density and pressure, and y0 is the adiabatic index. A

perturbation ' from the equilibrium is introduced into the

plasma. It is convenient to solve the system of equations (1.19)

relative to the variable ql'di, instead of for ~. If the pertur-

bation is very small scaled, with a wavelength that is small com-

pared with the radius of curvature of the cloud surface, then a

local coordinate system can be introduced, and solutions for any

perturbed quantity f can be sought in the form: /10

. o f(x)e _(iklj " L. _ ,t) (1.20)

where the x-axis is directed perpendicular to the cloud surface, and

y and z lie in the plane of the surface. Here, the solution for

n(x) has the form:

- (1.21)

where x0 is the normal coordinate of the boundary, which can be

taken as the origin of the coordinates (x0 = 0); and c4 , Kr .

The displacement 5 is expressed in terms of fl in the form:

V (1.22)

A vacuum field exists outside the cloud (we neglect the effect

of the surrounding low-density plasma), such that the equilibrium

magnetic field is tangent to the surface at the cloud boundary. If

the perturbation current is neglected, then the perturbed magnetic

field can be written in the form:

Y B "(1.23)

Then the equation e 'fBr{ (.O yields:

X>, (1.24)

where
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The dispersion for determining cCI(j )lis obtained by matching

the solutions inside and outside the cloud at the boundary. One

of the boundary conditions is:

__ -.( - = o, (1.25)

where - I, the Alfven velocity at the cloud boundary, is a result

of the constant total (gas-kinetic and magnetic) pressure at the

perturbed cloud surface, [9]. The second boundary condition is a

result of the continuity of the tangential component of the electric

field -IL.] at the undisturbed boundary. Here, the Maxwell equa-

tion, (at the boundary between the two media x = 0), projected on the

normal n to the boundary, is

Dt A 9 (1.26)

Here, we note that the normal component of the curl of a vector can

be expressed in terms of the tangential derivatives of the tangential

components of the vector. Replacing _ -E (near the cloud x < 0)

in Equation (1.26) by its expression from the equation of ion

motion*: , i !

(1.26a)

and noting that p0 = const, and v has the form Vi--.L [see (1.22)],

yields the following desired boundary condition:

°o[ 0 tJ.o (1.27)

Equations (1.20), (1.21), and (1.24) and the characteristic equations

for (1.25) and (1.27) yield the exponential growth rate (w = iy)

for the surface wave**:

We do not assume that the electric field lines are trapped EA

[9], since thislassumption greatly limits the observed frequency .
where- Ri- ), although (1.27) is the same as if the field lines
are frozen.

We note that a similar cloud boundary instability was examined
in [8].
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SIL (1.28)

Here we took ,A-vr from the equilibrium conditions, and the observa- /12

bility conditions (L<( 1 - L): K4<I <<K, for the existence of

an instability, and ~ It_ <Kyrs . This flute-like instability

(flutes, which extend along the magnetic field )k X) is a result

of the unfavorable (convex) curvature of the magnetlic field contain-

ing the cloud ( c. i-c). The perturbation amplitude decreases ex-

potentially on both sides of the cloud boundary on the characteristic

line Idl'cI (on'the order 'of a wavelength in the y direction).

Since we neglected the displacement current, the finite cloud con-

ductivity, the boundary acceleration and the electron inertia, then

the expression for the growth rate (1.28) is valid in the region

t '<<yofE s----, where tl- I/is the characteristic time for

changing the velocity of the observed part of the boundary in a

direction perpendicular to the magnetic field. In particular, for

the investigated short-wavelength perturbations (.)qi\)., the change

in the cloud boundary velocity can always be neglected for times

required to develop an instability. The maximum increment can be

evaluated by replacing IK"'- ~  j in Equation (1.28) by its maximum

value from the observability condition, which is equal to the transi-

tion layer thickness, that is, the penetration depth of the magnetic

field onto the cloud- c/"pj. Depending on the cloud collapse and

the diffusion of the magnetic field into the cloud, this layer will

thicken and the field radius of curvature m L will increase, so

that the exponential growth rate will decrease. For an estimate,

we introduce the maximum possible value of the growth rate, which

is attained at the initial stage of compression of the cloud by the /13

field' (L-L; ~\" 'i );'

(1.29)
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During the time (--T\) in which this instability develops, the cloud

boundary diffuses to a depth on the order of a perturbation wave-

length [10] -', -)j, so that this instability can lead to an

increase of the diffusion of the field into the cloud. As a result,

the diffusion time can be less than that found above from a con-

sideration of collisional diffusion, and thus the final transverse

cloud dimension can be larger than calculated earlier.

2. Instability of Surface-Potential Oscillations in a

Cloud Caused by the Cloud Passing Around the Iono-

spheric Plasma

The hydromagnetic instability of the cloud boundary, investi-

gated above, was related to the finite unfavorable curvature of the

magnetic field surrounding the cloud. Because of the sufficiently

rapid cloud expansion along the magnetic field, the curvature of the

cloud boundary decreases, so that this instability can be considered

not to be dangerous (it does not determine the diffusion of the

magnetic field into the cloud). Moreover, it-will be shown that the

cloud boundary stability is significantly affected by the discharge

of the ionospheric plasma, which cannot be considered in the single

fluid hydrodynamic model.

Here, we analyze the cloud boundary stability relative to the

buildup of potential surface oscillations, caused by the cloud pass-

ing around the ionospheric plasma, using a two-fluid hydrodynamic

model. The cloud boundary is considered to be a transition region /14

(layer) of thickness 1 << L,,where L is the cloud dimension. This

allows a one-dimensional problem to be solved if the investigated

perturbations have a characteristic wavelength A << L.

The-ionospheric plasma can be neglected at equilibrium within

the transition layer to a first approximation, since the cloud

density at this stage of evolution is higher than the density of

the ionospheric plasma. If it is assumed for simplicity that the

cloud particle temperature is constant, the equilibrium state of-
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the transition layer plasma will be determined by the system of

equations:

d8 4P-e
-d---- Ie (2.1)

Here, the index a is either for ions or electrons in the cloud.

Equations (2.1) are written in a coordinate system in which the

cloud velocity normal to the boundary is zero (Vc(o. .~) , the j~

axis is normal to the boundary, and the z-axis is along the mag-

netic field. Considering that the magnetic and electric fields

are absent inside the cloud and that only a homogeneous magnetic

field exists outside the layer, let us give the electric and mag-

netic field distribution in the transition layer in the form:

E - Ef,(W, BB,

such thatQ .-,(o).o fN(t)M,, , where L (0)

Otherwise, the functions fl and f2 are arbitrary, and should be

evaluated from an exact solution of the diffusion of the magnetic

field into the plasma. For the given electric and magnetic fields /15

in the layer, the system of equations (2.1) is easily reduced to

a system of linear algebraic equations for ne and n.:

SII  T Te + ' TtT 1c. -T I (2.2)

where re(0 l nio) -o , T-Te+Ti ,q 4' h I.

Equations 2.2 yield:

, n,), (2.3)

and the first Equation (2.1) yields the quantity:

T < T I' (2.4)
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where V a, eT" ' T, lis the gyro frequency of the particles

type.

If it is assumed that the boundary layer thickness cannot be

less than the quantity c/wpe , where c is the velocity of light and

w is the electron Langmuir frequency, and if the cloud parameterspe

developed above are used, then the quantity n is very small (n <

10-5). This means that the plasma is quasi-neutral (ne n.

S(io.0 t) practically everywhere in the transition layer; and that

the velocity vd is less than or of the same order as v0y for the

same parameters.

We turn to analyzing the stability of this equilibrium con-

figuration of the surface layer in the presence of a magnetized

plasma. Here, a dense nonmagnetized plasma moves along the boundary

inside the ci~oud; a stationary ionospheric plasma is outside the

cloud. Cloud and .Pasma particles are present inside the boundary

region. The stability will be investigated in the hydrodynamic

approximation. Linearizing the continuity equation and the equation /16

of motion for each particle type, under the assumptions of a per-

turbing potential (E- !) and unperturbed particle temperatures,

yields:

'i)

where jo.',.' (i) ; rt i are the perturbed density and velocity for

particles of a given type; and w'-f . Since the problem is homo-

geneous along y and z, all perturbed quantities are proportional to

zexp(iQkz*, 0. Combining the Poisson equation:

S(2.6)

12



with Equation. (2.5) yields a closed system of equations which de-

scribe the oscillation potential near the cloud boundary. Since the

plasma is homogeneous outside the transition layer (to the right and

left of the cloud boundary), then the potential. J(x) can be ex-

pressed in the form ek x outside the boundary. Hereafter, we will

be interested in only the surface oscillations of the cloud boundary

- that is, we will consider that the characteristic wavelength of

the perturbations which are perpendicular to the layer to be larger

than its thickness: c -I. We remember, however, since the probiem

is one-dimensional, .aL. Then the potential outside th -cloud boundryl

can be written in the form:

4(iz qy i:5C, 1 r(2.7)

Here, we neglect the layer thickness, since Kj<< . The system of

Equations (2.5) and (2.6) outside the boundary then reduces to a

system of linear homogeneous equations whose solvability condition /17

is the equation:

iK K , (2.8)

Obviously, Equation (2.8) has a different form on both sides of the

boundary. In the cloud region, where ~.I this equation relates

kl with w' and the cloud parameters,.but in the stationary iono-

spheric plasma region (. n.-J ) it relates k 2 with w and with the

ionosphere plasma parameters.

The dispersion equation [U(), , a)j'] should be obtained here by

considering the boundary conditions. However, in order to write the

boundary conditions, first it is necessary to find the concentra-i 7
tion n' as a function of the potential inside the transition re-

gion, and then to integrate over the thickness of the layer. The

boundary conditions obtained in this manner are insensitive to the

13



gradient of the velocity v perpendicular to the boundary. This makes

it possible to neglect the difference between the quantities v(o

-1
and v from the very beginning, and to write the solution to the

equation of motion [the second of Equations (2.5)] inside the transi-

tion layer in the form:

.. ..- I W " I (2.9)

where 9+ - • Substituting v in the continuity equation leads

to the following equation relating the concentration n' with the

potential #:
Ti - (2.10)

Here, /18

Theexplicit dependence of n' onE- can be found only in two specific

cases: a) for cold particles l' s, when it is possible to neglect

the first term in the parentheses of Equation (2.10) on the left

side to obtain:

e- L (2.11)

and b) hot particles (a'<<tI) when the first term is large compared

to the second*, and it is possible to write:

• T "  (2.12)

Hereafter, we will assume a cold iono]spheric plasma

('K IVtil, j T,-~o ), that is, Equation (2.11) will be used for

the electrons and ions in the ionospheric plasma, and terms

Strictly speaking, this hydrodynamic approximation is correct only
in these two limiting cases.
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proportional to ,' will be completely neglected in Equation (2.8).

Then, will have the form:

. " (2.13)

Both the case of cold electrons (;''>+a) and hot electrons ( K

will be considered for the cloud plasma. The cloud ions will be

considered to be cold (C ~ ,:). /19

a) Cold electron case (;_vr) I

In this case, Equation (2.8) inside the cloud reduces simply

to the equation k2 = 0, and yields:

Substituting n' from Equation (2.11).for all particles in the

Poisson equation (2.6), and integrating over the thickness of the

transition layer leads to the following dispersion equation*

K- I- K (2.15)

The cloud particle density significantly exceeds that of the iono-

spheric plasma r.yn,j , that is, cz2,Y . Moreover, the electron

gyro-frequency is less than the electron Langmuir frequency ( ~~c<J)

in the ionospheric plasma at altitudes of interest. Then, Equation

(2.15) is solved in the frequency region 0, . r4cop, and is

easily determined in two limiting cases ° > •

1) k >> k . Then k = k k , and Equation (2.15) has'
y z 1 2 \ y

the form:

It is easy-to see that Equation (2.15) can be obtained directly
from the continuity condition at the boundary from the normal com-
ponent of the electric induction.

15



--- 0, (2.16)WL0 P~Ro .±~ W o4)o - 3it

Since , e3 , then iw' - , and

2 ~.pi- .L (2.17)

Equation (2.17) shows that oscillations with /20

jv~Lj~j~ \ (2.18)

are unstable with an increment

jIr. "  * (2.19)

The electric fields which arise in this instability are directed

perpendicular to the magnetic field and can significantly affect the

current distribution in the layer, which in turn significantly

changes the diffusion of the magnetic field into the cloud. For

the case:

Equation (2.15) reduces to the form

.) 2 er o (2.20)

and has an unstable solution w = iy, where

r=2.i, .i l... . . (2.21)

An examination of these limiting cases makes it obvious that

for lvl;.j, an instability develops for which the thermal velocity

dispersion of the cloud can be neglected. However, if-we take

xK for these instabilities, 'then it turns out that instabilities

with ~ >~~jloccur only for bundle velocities significantly above

the thermal velocity of the cloud electrons. Actually, it follows

from Equation (2.19) [see also (2.; )] that:

16



,, -T: (2.22)

Since we obtain Iji tr experimentally, then the hot electron case /21

is of greater interest.

b) Hot electron case C( <<re)

Here, the solution of Equation (2.8) for kl, that is, the pro-

jection of the wave vector on the x-axis inside the cloud has

the form:

t1 (2.23)

where v 4/"( , and M i is the mass of cloud ions. The concen-

tration n' is now related to the potential p for cloud electrons by

Equation (2.12). Then, integrating the Poisson equation over the

thickness of the transition layer leads to the following dispersion

equation:

: -- + Z. W " - itd I,- - I (2.24)

where k1 is determined from Equation (2.23), and k2 is determined

only by assuming an ionospheric plasma which is not too rarefied
S- n r - -( < <- . Then, in the first approximation - , W -K y

and Equation (2.24) takes the form:

, '., (t :V -, =  .( ,). ,i (2.25)

after substituting k1 and k2, where:

E (2.26)
:ij; W, ." - J " A

If the left side of Equation (2.25) is taken as a function of

.'o, then it can be seen that it has a minimum value E/ \,r, where

fie" 'p is the Debye radius of the cloud electrons, under the

condition that tr, i ( rg stKf. ).. From this it follows that a /22
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purely aperiodic solution (r'> o  occurs for large values of .(s)( .

Studying the behavior of q as a function of Y0, we note that q is

large when OjZ - n- . Introducing the notation ,/ in the circle "

yk= 1 yields:

(2.27)

It is obvious that ,o for rLh , that is, the instability occurs

for .1K I<s\. On the other hand, ji0 requires that 9' 2 P r , that

is, the condition for the existence of an aperiodic instability in

the system of a stationary cloud has a resonant character:

oiS1, j.: I (2.28)

The exponential growth rate of this instability is:

Y=W i' t (2.29)

and is larger than the cloud Langmuir frequency (.~ )>, .).

A drift instability can exist along with the highly resonant

aperiodic instability, if > ~c,< . Here, if i0l, then the solu-

tion to Equation (2.25) is found in the region lyli.-xz , and has

the form:

" ' ie (2.30)

Thus, outside the resonance, determined by (2..28), there are two

branches of unstable oscillations with frequencies:

-W . , i.-L &r (2 31)

and with an exponential growth rate of: /23

, $- LU '< s,(2.32)

which, however, is less than the Langmuir frequency of the cloud

( 318mc cl.
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In conclusion, it should be noted that since the directed cloud

velocity I14TqlA and, under the conditions being investigated,

I~t <<e <i i , the Inequality (2.28) can be satisfied only for

Sn T !. This condition is not satisfied for experiments of

interest to us. Thus, the maximum exponential growth rate for the

surface potential oscillation instability of the cloud, when passing

over the ionosphere plasmajis less than the Langmuir frequency of

the cloud ions. However, in this case it significantly exceeds the

growth rate for hydromagnetic instability. Thus, this instability

can play an important role in the diffusion of a magnetic field

into the cloud plasma.

3. Stability of Weakly Inhomogeneous Anisotropic

Plasma with a Finite Pressure

(as applied to a cloud at its diffusion expansion stage)

a)_ Initial equations

The hydrodynamic instability of the boundary and the instabi-

lity of surface oscillations of the cloud when passing over the

ionosphere plasma are related to the end of the first stage - the

free expansion stage of the cloud - and to the start of the second

stage - the stage of diffusion of the magnetic field into the cloud.

These instabilities basically determine the diffusion velocity of

the magnetic field into the plasma, but they cannot qualitatively

change the character of the cloud evolution, since they only occur /24

in the presence of a thin transition layer between the magnetic

field and the cloud plasma. Depending on the penetration of the

magnetic field into the plasma, the transition layer thickness in-

creases, and becomes equal with the cloud dimensions. In this case,

volume perturbations start to play an important role. These per-

turbations have a wavelength which is less than the dimensions of

the cloud inhomogeneities and of the magnetic field. We use a

kinetic approach to analyze these perturbations. This approach

allows us to consider the effect of pressure (temperature) aniso-

tropy in the cloud plasma, which ariseslfrom the free flow of the
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plasma along the magnetic field (T>T,,)\. The effect of the surround-

ing ionospheric plasma will be neglected for the time being (see

below). The problem can be considered to be one-dimensional in the

case of a small-scale perturbation (KL-_ij), which will interest us

further on*. Here it is not necessary to use the coordinate system

with the x-axis along the direction of the inhomogeneity. It is

more convenient to choose a coordinate system such that Y, (the

oscillation wave vector projected on a plane perpendicular to the

magnetic field) is perpendicular to the x-axis. Then the projection

of the wave vector along the inhomogeneity is .k my , and !"Kiasir

perpendicular to the inhomogeniety, where the angle a is the angle

between the direction of the inhomogeneity.and the vector [.

The dispersion equation for small oscillations in the quasi-

classical approximation tjthe zero approximation with respect to the

parameter (L 1 ] is an algebraic equation, and has the known form:

SLj)=o, (3.1)

where N~= is the refraction index of the medium, and /25

-k+7i*(e-;j ) is the dielectric constant tensor of the medium (i

is the dielectric constant tensor of the ath type.particles). If

we introduce the angle 0 between the Awave vector k and the z-axis,

which is directed along the magnetic field (~ - /KK I), then, in

the chosen coordinate system with kx = 0, Equation (3.1) takes

the form:

,-6 , ( .,: O- 6 ) .. , (f-~OSi -" )\ (3.2)

We will also neglect the curvature og the magnetic field lines,
which is correct in this stage, when the cloud is mainly stretched
along the magnetic field (here, the field lines are only weakly
distorted).
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The electron dielectron constant for the cloud can be deter-

mined using the approximation of a weak inhomogeneity, since the

electron Larmor radius is small compared to the characteristic di-

mension of the inhomogeniety. The state of the ions in the dif-

fusional cloud expansion passes through two stages. In the first

stage, the Larmor radius of the ions is large compared to the cloud

dimensions. In this case, the calculation of the ionic contribut 'on

to the dielectric constant can neglect the effect of the magnetic

field (the case of unmagnetized ions). As the cloud expands further,

its dimensions increase and become larger than the ionic Larmor

radius. Then we have the second stage - the stage of magnetized

ions when the approximation of a weak inhomogeneity is applicable

to the ions as well as for the electrons. Thus, the dielectric con-

stant tensor for agiven particle type is determined in two limiting /26

cases: p >> L and p << 1, where p~'/l is the Larmor radius of

the particles.

1. p >> L

In this case, as noted earlier, the effect of the external

magnetic field on the motion of a given particle type can be

neglected, and the binormal distribution function:

can be used as the equilibrium distribution function. The perturba-

tion contribution to the distribution function is determined from

the known linearized Vlasov equation (we neglect collisions between

particles), and has the form:

where

" -.- .21
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The dielectric constant tensor is related to the conductivity

tensor by the relation . ,2; which is determined from the

equation:

f C1 (3.5)

whereI is the perturbed flux of a given particle type. Integration

over velocity in Equation (3.5) in the general case is complicated.

So we consider two limiting cases: 1) wavesppropagated perpendicular

to the magnetic field (cKt cr ), and 2) waves propagated along the

magnetic field (#U'!). It is obvious that in the limit of cold /27

particles ("~r v r), both cases should give the same result. In the

first case, the multiplier ( t- V ),/in Equation (3.4) for f is ex-

panded in powers of l,.(w-i")-'i/. In the second case, it is expanded

in power of sit(W- , . After integrating Equation (3.5) over

velocity, this procedure yields the following expression for the di-

electric constant tensor:

- (3.6)

where, in the case iiTi\sTr, the tensor A.. has the components:

- ,IJtx i eas t s 1tat- 13 (3.7)
A, J , P1, (or (3-7)

The components in the second case wK .J:

22

q l , )^ \,~ (3.8)

Here, t(t ' K. jKL.Tf'r The other components of A..

are equal to zero. It is easy to see that the Expressions (3.7) and

(3.8) for A 3 coincide in the limit :01 when:3t(?- )'1"-4LjL
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II. p << L

In this case, we examine the dynamics of the cloud electrons

and ions in the second expansion stage. In the first approximation

of a weak inhomogeniety, the distribution function for a given

particle type/is chosen as close to a binormal function: /28

0 ), (P) (3.9)

where .(I is determined by Equation (3.3), and 1 =  The per-

turbation distribution function is written in the form of a time

integral along the unperturbed trajectory of particle motion:
0

Here is it convenient to write the particle velocity as a function

of t' in projections on the direction of inhomogeneity (v'), and the

direction perpendicular to the inhomogeneity (v ) (the direction of

particle drift):

Zu; v(3.11)

The value of iAj along the particle trajectory has the form:

t : -- L d-d ,(3.12)

The angle, is the azimuthal angle in velocity space between 's and

the direction of the inhomogeneity. Substituting Equation (3.10)

for the perturbed distribution function in (3.5), and integrating

over ,-6J and r/ determines a.. and also sij only in terms of an

integral for'O!. Here, the dielectric constant tensor .ij has

the form:

(313)
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Here, the vector A has the projections: /29

Also, A and are the complex conjugates of the quantities A

and A
y

The function Jn is the Bessel function of the argument D/ I . The

function Jt is determined the same way as before [see Equation

(3.8)], and only depends on the argument 1"A14j. The other

notations have the form:

u1K-'#, Lv ;c, f) (3.15)

The brackets <..> indicate integration over 7.r with a weight:

b) Electron oscillations in a cloud with

unmagnetized ions (pi >> L)

As we mentioned earlier, when the magnetic field has almost

completely diffused into the cloud, the transverse dimension of the

cloud becomes small compared to the ion Larmor radius. At this

stage of the cloud expansion, the ions can be considered to be un-

magnetized. They can be described by the dielectric constant

found in section 1. The electron component is always magnetized

(even in the plasma transition layer). Thus, its dielectric prop-

erties are 'described by the dielectric constant tensor for section

2 at any stage of expansion.

This paragraph treats oscillations with frequencies /30

-- -- . . For such oscillations, the ions are cold

and "infinitely heavy", and make only a small contribution to the

24



dielectric constant. We-restrict ourselves to studying long-wave

(Kq<<), low-frequency ( r .. Rc perturbations, which are sensi-

tive to relatively small temperature anisotropies. Then the com-

ponents of the dielectric constant tensor for the electrons (and

thus for the whole plasma) can be written in the form:

F !;j (3.16)

where E}j is the Hermitian part of the dielectric constant tensor,

which characterizes the hydrodynamically unstable spectra of the

oscillations:

plasma to the magnetic pressure,a , , an

r AT" L- 7 - - - -

S7 (3.17)
-. fal' i "~k(, D) 01)< T- +S m)

,Tit iin a cos

'Here, V ' isthe ratio of the gas-dynamic pressure of the

plasma to the magnetic pressure, W" ,:,, ,'I L3-- and

Expressions for StS,-the anti-Hermitian part-of , tho-£-e ,l- ,ielectric-constant),

tensorlwill be given later, after analysis of the hydrodynamic

stability. Substituting cij in Equation (3.2), and completely /31

neglecting the anti-Hermitian part 0) , yields the following equa-
ij

tion (for simplicity, we take T = const. Then rd reduces to

< > ,7 '7 i-- (3.18)
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Equation (3.18) describes two independent oscillation modes for a

plasma whose pressure is not too high (, fizLI). One of these modes

lies in the frequency region 1&3"'.odj,(, is not related to the plasma

inhomogeneity, and is called whistler (or whistler atmospherics).

The second is intrinsically related to the presence of anisotropy

and inhomogeneity, that is, it is the "drift-anisotropic" mode.

The oscillation spectrum for the whistler mode has the form:

a sj (3-19)

and is purely imaginary, that is, the oscillations are aperiodically ]

unstable if the inequality

f ! (3.20)

is satisfied, where , . Analysis of Inequality

(3.20) shows that stabilities only occur in regions of positive AT

when:

T a (3.21)

where i is the first root of the equation,()=// . The correspond- /32

ing interval for the quantity p 0) has the form:

aT 2 (3.23)

We note that in the hydrodynamic whistler instability, oscillations

are excited with a large ratio -sin~1) , so that there is always
/

a minimum value --b' i .O below which the oscillations are hydro-

dynamically stable (see section 4).

If the conditions for a hydrodynamic instability are not satis-

fied in the system, then it is necessary to study the possibility

of the existence of a kinetic instability. Then the quantity-K ..
is not very small, and the fundamental contribution in the anti-

Hermitian part of the dielectric constant tensor comes from terms
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proportional to i - . In this case, the tensor components

will have the form:

., : -. ~ I;-- 7r I(3.24)

and the dispersion equation (3.2) reduces to the equation:

(3.25)

The solution to Equation (3.25) has the form =oW *j+i, where the /33

increment y is:

Z : (3.26)

and is positive only for negative Ai:

T 4  (3.27)

Condition (3.27) shows that the kinetic instability, which arises

from ordinary particle-interaction resonances with the wave (,,.,Lq)

is possible for the same degree of anisotropy as the hydrodynamic

instability. If the degree of anisotropy is small ( . [.,) , then

studying the stability of whistlers requires an examination of

oscillations with a sufficiently small ratio .41k, when the resonant

reaction of particles with the wave starts to play an important role

at the cyclotron frequency ( G; .P ). Examination of such oscil-

lations is simplified by the fact that the fundamental terms in the

dispersion equation are proportional to az. Taking zz differentzz zz

from zero and using )AZII/ in the first approximation yields the

following equation from (3.2):
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which, in the frequency and wavelength region of interest to us,

transforms to the form (4 r1 / ):

JIK (3. 29)

Here, we use the following approximate expression for the function /34

E -i K,, r.,

(3.30)

The double sign in Equation (3.29) corresponds to the two roots for

the whistlers [see (3.19)]. The solution to Equation (3.29) has

the form:

= f+'e (3.31)

where o - -<< and the instability exponential growth rate y is:

T K .' e X (3.32)

It follows from Equation (3.32) that a small temperature anisotropy

leads to unstable oscillations which propagate along the axis in a

cone of angle 00, determined by the relation:

if the condition:

~T,,K -- (3.34)

is fulfilled.

Since terms proportional to lA [see Equation (3.17)]

were not considered in the dielectric constant [II], the
results obtained above [see Equatiois (3.18) , (3.32)] are more

general for the conditions of hydrodynamic and kinetic instabilities.

Turning to the analysis of drift oscillation instabilities
(W~ Wwn, we note that in this case the left side of Equation
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(3.18) is small for a small degree of anisotropy (~ iT). Then /35

Equation (3.18) can be reduced to the form:

__ n- _ __-2(c~mT _ 0(3.35)

where CO C
-

A ' ~ . The equilibrium condition

Co. T* '/8 r-relates the Larmor frequency (wd) and the magnetic drift

frequency (wM):

d W -i (3.36)
If we introduce the variable x T and consider that Equation

(3.35), for ,AT

(3.35) for can be solved only if cLj, that is, a- then

Equation (3.35) takes the form:

(3.37)

where a U 4 ) s" (I3 ] 2' I - (

Equation (3-.37) has complex roots for B I 1. -hus, drift oscilla-

tions (w d) are unstable in a plasma with finite pressure (B > 1)

for small degrees of anisotropy. The instability exponential

growth rate is of the order:

1. (3.38)

In a plasma with a sufficiently large pressure (jP -JLi), Equation

(3.18) reduces to the form:

in the frequency range w % wd, and has unstable solutions with a

frequency w]% d with a growth rate y, equal to

Le;1'-":- (I - .~-! (3.40)

It follows from Equation (3.40) that the drift oscillations in an /36
anisotropic plasma with a high pressure ( >>1) are unstable only
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for propagation angles which satisfy the condition:

• .(3.40a)

Thus, electron branches of the oscillations can be excited at

the first stage of expansion, when the transverse dimension of the

cloud is small compared to the ionic Larmor radius. The presence

of small pressure (temperature) anisotropies, which are caused by

the free cloud expansion along the magnetic field, can lead to a

buildup of whistler type oscillations only for a pressure large

enough to satisfy the condition &~. r . As the cloud expands, its

pressure will fall, and a small degree of anisotropy will not be

able to cause a whistler mode instability (if the kinetic instability

with an exponentially small increment for I is not considered).

The electron drift oscillation instability, examined above, is

evidently more dangerous at this stage of the cloud evolution.

Drift c) Drift oscillations in an_anisotropic plasma

magn with magnetized ions . (

We now investigate the stability of the drift oscillations in

the cloud at the expansion stage when the cloud dimensions become

larger than the ionic Larmor radius. In this case, the dielectric

constant of both electrons and ions is described by Equations (3.13) /37

to (3.15).] We will not examine completely the stability of drift

oscillations in a plasma with an anisotropic pressure, but limit our-

selves only to explaining the effect of a small pressure anisotropy

on the stability of a weakly inhomogeneous plasma with a finite

pressure. We.consider frequencies and wavelengths contained in

the interval:

Evaluating terms in the dispersion equation (3.2) shows that

purely transverse oscillations occur in the frequency range of

interest ( Ela-, 0K-o).- These oscillations propagate almost
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perpendicular to the magnetic force lines (I) and are described

by the equation:

where

These oscillations exist in the plasma only if the degree of aniso-

tropy is not too small:

->.T (3.42)

Equation (3.41) .can be solved analytically only in two fre-

quency regions: 1) W>> ,/; and 2) '<< . In the first case, the

function C(a) is approximately equal to 1/, and the solution is

easily found to be:

-f -(+ -- -a;,r o te I (3.43)

This solutionj is valid only for: /38

r r. (3.44)

The instability occurs for the condition:

*t > -T .
T,,l .e (3.45)

Equation (3.44) is satisfied only for 1 eP , that is, it has

a resonant character. If it is not satisfied, then the solution to

Equation (3.41) will be found in the region ]lciI. Assuming for

simplicity that jw!i.0^;j, and using the following approximation for

the function C(a) for small lal:

CZ)t ~(3.46)

where:

310,
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for the real part of the frequency WR leads to the equation:

AB .p I : (3.47)

If we limit ourselves to the case of small anisotropies and take

Ta' , and if we are not interested in large pressures (p i/),

then Equation (3.47) has a solution in this frequency range ocM~

which is approximately written in the form:

T,, o - , (3.48)

Evaluation of the anti-Hermitian part of (3.41) yields the follow-

ing expression for the instability increment:1

t= ro ., ,,,._C a lu,l(a, / 17 (3.49)

Equation (3.49) shows that unstable oscillations with a fre- /39

quency less than the magnetic drift frequency can exist in an aniso-

tropic weakly inhomogeneous plasma if the temperature anisotropy and

the oscillation wavelength are related by the equation:

• ' ., (3.50)

4. Effect of the External Plasma (Medium) on the

Cloud Stability (p "i )

The previous section examined the stability of the cloud at

the stage of its motion for 0zilwhen the presence of the surrounding

magnetospheric plasma was neglected. Here, the effect of the exter-

nal plasma will be :considered on the anisotropic instability of the

cloud. For convenience, the investigation will be done in a system

which is at rest with the investigated cloud element. In this

system, external plasma particles fly into the cloud with a velocity

v 0  u along the field, and with a velocity v0 perpendicular to the
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field (see section 1). We consider the case when the average

particle velocity is along the field, that is ~ . This is valid,

for example, at the stage of cloud motion when the transverse cloud

dimensions become larger than the ionic Larmor radius ',2 for the

rarefied magnetospheric plasma, which flies into the cloud ( }<0;

parameters\with a line above them refer to the external plasma).

Here, the drift in the crossed geomagnetic and electric)fields of

the polarized cloud will set the external plasma particles in motion

with the same direction and velocity as those of the cloud as a

whole (the cloud injection velocity FL). Thus, the average trans- /40

verse motion of the magnetospheric plasma can be neglected relative

to that of the dloud. The presence of a relative average velocity

between the plasmas of the magnetosphere and the cloud can be related

only with the expansion of the cloud along the magnetic field force

lines. Here we notethat the case of cloud injection along the geo-

metric field is of definite interest.

For cloud parameters of interest, the magnetospheric plasma

can be considered cold (T << T) and rarefied (n << n) in relation to

the cloud plasma. We consider the stability of oscillations in the

plasma for which electrons can be considered to be magnetlized

I KI , ,W-.-u ,. and take' Y. K'1 I, and .. , ] for the

ions. In the 'frequency region I '~, , 'r u". , both a small

degree of plasma anisotropy ( a-'4) and the plasma current velocity

have a small effect on the plasma stability, and the exponen-

tial growth rate can be rather large. In this region, the contri-

bution of the ions* to the dielectric constant tensor can be

neglected. The components of this tensor can be written in the

form (in a coordinate system where r,= ):

This is correct, if we do not consider the case of wave propaga-
tion too close to the direction i '0 J(which is related, of course,
to the whistlers examined in section 3).
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"'" LW LCd r L <2

F, o." C"' ~TrltfL,

Substituting the tensor c ij from Equation (4.1) and performing. /41"

certain transformations reduce the dispersion equation (3.2) to

the form (if small terms .-- r

+ *. 1. ar n g ec e )

's (4.2)(1~1

Z L

x- P-" 'T . _, 0-n U !_-
• }

*O c_2 r* n !21

InSubstituting the castenser from Equation (.1)4.2 transformed into the spectral Equation

(319).certain transformations reduce the dispersion equation; in general, it is diffi-to

cult to solve it. First of alla we neglote that we are only analyzingd):

the stability of plasmas which have a small degree of anisotropy

For long-wavelength oscillations ,- Iunstable solutions to /42

Ucr' 2 n

'P=0
Inte~Equation (42.2i traereunsfre into. th spdhetl Eqaon

-i -,,D -- -my .~2 c/_,+ I

where

S andieia vl t ( - C -- I F,'

Forc~Z~. ~ f lgal t on uto

I h a -,. Equation (42)le n h frequny reon'wK, and hae the fqo

Co.9) -hi is ±a f uS(1>-r I% -.1pJ./F2iWgnra; (4.3)d

whereaiiyo lsaswihhv ml dge faiorp

2 k,,-2, , -

34



andiU'-

The instability condition is

In the case of a larg evelocity "u", when , (that is, :;uT), the

condition for oscillation buildup (4.4) is governed by the inequality

where {;. "O Z _

In particular, the instability occurs even if the temperature aniso-

tropy is neglected, that is, for *(i~ )~P. O" . Here the condition

for a purely current instability is the inequality:

2 < . (4.6)

If the velocity of directional pressure is small (~ 4 '1), then the /43

instability condition [Equation (4.4)] has the form:

,'p ~lif .. (3 r - - o (4.7)

where

~-----3---.

The Inequality (4.7) can be fulfille only in the presence of a

temperature anisotropy in the cloud'(i )

Condition (4.7) is fulfilled for (we are mainly interested in

the case 4*?u):
, , (pr) .(4.8)

where:

35



The instability occurs only for d > 0, that is, for:

p " ( " - (4.9)

For F.-o( - i when p-l , Equation (4.8) transforms into the

instability conditions given by Equation (3.21), above, for the

case i,=,'-,>o. We investigate how the change in the parameter

" 3*, laffects the plasma stability. Th'e parameter v should in- /44

crease monotonically as the cloud diffuses, because in all proba-

bility, the cloud density will decrease faster than its temperature.

As v increases from zero to 9w V-- -< 1 \, the parameter p decreases

from 1 to p*. Here the minimum value of the degree of anisotropy

( a ) increases: correspondingly from a value" ',, (pt' to

, A (P"P)i above which the instability condition (a.), is satisfied

(see Figure 2). Furthermore, instability occurs in the interval

I <<, where ?<' . For v > 1, the quantity A+ sharply falls and

then monotonically rises to the value n,=.(i:2), with further growth

of v. The value of A+ at p = 2 is much smaller than the value at

p = 1. We note that the value of p is bounded from above (v should

not beclose\to 1) by the observability condition (0<<- @). Thus,

for >1, ( V>I ) the observed anisotropic instability can develop

for a smaller degree of temperature anisotropy in the cloud than

for the case -- < (V1. It follows from Equation (4.3) that the

corresponding exponential growth rate for ~-~ is larger than in

the opposite case (remaining parameters being the'same). The un-

stable perturbations are distributed in a cone with angles

I ,  e- JUKPI where 9 ~c="," . As lincreases in the interval

, the growth rate initially increases from zero to a hkaximum

value '( () for #=-j azLeK , and then falls. It follows from
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Equation (4.3) that the exponential rate for perturbation growth in

the system of cloudA+ plasma is of the same order as the increment

for the buildup of the whistler mode for the cloud:

The maximum value of the growth rate is determined by the observa- /45
bility condition K<<i;,K,,u < , that is, it can attain values of

0.01 to 0.1 megahertz (for u-o,lz. ).

Ujnstable perturbations with shorter wavelengths ( ~ag 5

have a phase velocity which is larger than the current velocity

( >~~u)A . Because of the observability condition ?<<, p ,

the directional velocity of the current u should be small compared

to the thermal velocity of the electrons vT. Here the parameter

-n is small, and the temperature anisotropy (A X 0) of the cloud

plasma significantly affects the instability.

If the perturbations have a sufficiently small wavelength

i( po X ), when the frequency spectrum lies only in the region

K.u\a, then Equation (4.2) becomes biquadratic, and has the

solutions:

2 ( (4.11)

where

6. KJAU.

From Equation (4.11), it can be seen that, along with the whistler-

mode distortions (3.19), the presence of the external rarefied

(magnetospheric) plasma causes a new spectrum of oscillations which

are absent for fn = 0. The oscillation spectrum (4.11) is stable

only if the conditions
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Q,+ ukog. (4.12)

are satisfied simultaneously. Thus, the development of perturbation

instabilities requires that at least the condition a2 < 0 be satis-

fied, or else A > A , which is weaker than the instability condi:ion

(3.20) al < 0 (or A > 10) for the whistler mode-:(-3. , but 5-t

"stronge'r thn the condition A > A+ for perturbation instabilities

with . zi, for I, . For , the oscillation spectrum

(4.11) is unstable for A > a 2 and has a growth rdte on-the order of

.. U (4.13)

If p>p(- - , then the growth rate can be significantly larger than

Equation (4.13). In this case, only the whistler-mode occurs from

the spectral equation (4.11). This mode is unstable (3.19) fr A AI

and has a growth rate given by Equation (4.10). A new mode also

occurs, which is unstable for aA <z, and has the growth rate

-I K, ,- -. This last oscillation branch exists in the region

S4 for -~>>, and transforms into the region O-, for 41 .

Finally, we consider other possible solutions to Equation (4.2).

in the region o-,.vj. The wavelength is of the order Ir- for

these unstable oscillations. Here, if v >> 1, then the oscillation

frequency is equal to:

The instability growth rate (for A > A2, when a2 < 0) is of the same

order as the rate for the whistler mode (3.19). If v << 1, then the

oscillation spectrum reduces to a pure whistler mode, an unstable

mode A >)A,l and a new mode:
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which is unstable for the condition /47

It follows from this that the frequency instability (4.15)(k,,u !

is also possible for small degrees of cloud temperature anisotropy

(A). The exponential growth rate is of the order

n-rIr (IJ -69 ~ / (4.17)

Thus, in the frequency region Y)-:,,uj, the maximum rate is actually

of the same order as in the region !c-<,,u that is, of the same

order as the rate for the buildup of the whis1er omodt.

Conclusions

Analysis of the stability of an anisotropic inhomogeneous cloud /48,

plasma, which propagates in the magnetosphere along the magnetic :

field force lines, produced the following results. If the degree

of cloud temperature anisotropy, which results from its expansion,

is small ( - --' i), then the hydrodynamic whistler instability

will be substantial only for the initial stage of diffusional expan-

sion. Here, an'd the condition> 'is fulfilled for the hydro-

magnetic whistler instability. The characteristic rise time for

these oscillations is approximately 10 - 5 seconds. As the cloud

expands further, the kinetic whistler instability '~=o0 becomes more

dangerous. This instability has an exponential growth rate*

y 1 i1O sec-1, for Ar 1 and K -O

Considering the cloud plasma inhomogeniety in the presence of

a temperature anisotropy leads to the discovery of new branches of

unstable drift oscillations. At the initial stage of diffusional

A rather complete analysis of stability of whistlers, which propa-
gate along the magnetic field (K,10), is given in [12], for example.
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expansion, when (pi > L), an instability occurs with an exponential

growth rate on the order of frequency for drift electron oscil-

lations:

i.e., this rate exceeds the rate for the instability for kinetic

whistler oscillations. Moreover, as opposed to the whistlers, which

propagate almost entirely along the magnetic field force lines

(kL = 0), these perturbations do not have a rigorously separate

direction, that is, they can be recorded in a direction perpendicu- /49

lar to the magnetic field. Further expansion of the cloud leads to

unstable drift oscillations with a frequency,

3 rursLZ sec

when the ions also become magnetized (P;<L, L >o10,)

The following statements can be made about the development of

anisotropic current instabilities, which were examined in this

paper. First we note that perturbations with large phase velocities

u can exist when the spreading velocity of the cloud along the

force lines is small compared to the thermal velocity of the cloud

electrons ( I, ), because of the observability conditions

< , . Here, the rati and i are arbitrary.

Perturbations with smaller phase velocities -C can grow in the

plasma only for a sufficiently large flow velocity .1'>i.~+V'T . Thus,

if conditions U<<ITe Al~/"are satisfied, then (for ?AJI) shortwave-

length\perturbations for which ( Kfo )L> 4I)' will grow at the

initial stage of diffusional cloud expansion ('a-4 4, 2 ) with a

maximum exponential rate [on the order of the whistler mode rate

from Equation (4.10), but with co>uK.u ']:i
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The rise time of this instability can attain values of up to 10

times the cyclotron period, that is, up to 10 - 5 sec - I (with a con-

sideration of the conditions w- e and K<<4). In the case of

W'4 , the growth rate is much less. At the subsequent stage of

cloud expansion, when becomes small (as previously, n/n << 1), /50

such that A <<( -1 (or if at the stage." 1 the cloud temperature aniso-

tropy is small)., the instability has a resonant character with

respect to the wavelength

and has an' exponential growth rate p(-*j-l  . For

c"o w' see Equation (4.17).]", Here, the condition ? fir~ + r,

must be fulfilled. This instability decreases as the cloud continues

to expandl when its density falls to a value of h4,. Thence it

follows that if the flow velocity of the cloud along the magnetic

field is small .,.- l (but un-vr ), then instability is possible for

a small degree of cloud anisotropy ( sil) only in the initial

diffusional expansion stage ( 1 4 i). For all the parameters chosen

for evaluation in this article, the maximum cloud expansion velo-

city along the geomagnetic field only slightly exceeds the ionic

thermal velocity in the case of a hydrogen plasma, but is much

larger than the ionic thermal velocity for a barium plasma. Thus,

if the injected plasma cloud does not have a significant initial

temperature anisotropy, and if the ions are not able to cool signi-

ficantly during the initial cloud expansion stage ( ~ , then a

hydrogen plasma could be unstable relative to the hydrodynamic

current instability only during the initial diffusional expansion

stage ( .- i), while a barium plasma ;can remain unstable for further

cloud fusion, as long as the relationship is satisfied.
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The above linear stability analysis of oscillations of an

anisotropic inhomogeneous plasma, which flows along the magnetic

field force lines in the magnetosphere, does not answer the question

of the physical consequences of one instability or another. These /51

answers require a study of the nonlinear stages of instability

development. However, the following statements can be made rela-

tive to the drift instabilities of an inhomogeneous plasma which has

a temperature anisotropy. As in the case of a convection current

instability, which is also related to the inhomogeneity and particle

velocity distribution anisotropy, these instabilities should lead

to additional convection, that is, to equalization of the kinetic

and magnetic pressure gradients. In the final analysis, this can

lead to a faster diffusion expansion of the cloud. As the in-

stabilities develop, which are related to the temperature aniso-

tropy, there is a tendency to weaken the temperature anisotropy,

although continued longitudinal expansion of the cloud will some-

what maintain the cause of the instability.
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Figure 1. Injection of a plasma cloud
at the initial moment of time

Figure 2. Boundaries of the instability region

(shaded). The broken curve corresponds to the

condition JSiD . The solid curve corresponds
to -l . l "
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